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SOME MOLECULAR COLLISION INTEGRALS FOR POINT ATTRACTION
E3
AND REPULSION POTENTIALS

M. A, Eliason,1 D. E. Stogryn, and J. O. Hirschfelder
ABSTRACT

If the pairs of molecules in a dilute gas interact with an intermolecular
energy of the form, ¢ = d/r® , the collision integrals which determine the
E

transport properties can be writtenl
, 2
~l5 S) 9 kTYE [ S LVE g - %)
(> s A (8 | = e (s+2 ¢
A ZoMm nT

Here »« is the reduced mass of the colliding molecules. The following constants

are evaluated:

Repulsive Interaction Potential, d positive
A(l)(Z) = 0.397601 A(Z)(Z) = 0,527843
a3y - 003115 a®3) = 0.3533
Attractive Interaction Potential, d negative
A(l)(Z) = 0.806907 A(Z)(.Z) = 0.710970
A(l)(3) = 0.6750 A(3)(3) = 0.4641
The constants for , = 2 were readily evaluated in closed form. The constants

for the repulsive potential with § = 3 were evaluated using an expansion develop-
ment of Mott-Smith. The constants for the attractive potential with 5 = 3 were
evaluated numerically making use of elliptic integrals for the angles of deflection.

For attractive potentials a singular point was encountered corresponding to orbiting,

This work is being done under the Office of Naval Research Contract N7-onr-28511.

J O. Hirschfelder, C. F. Curtiss, and R. B. Bird, '"Molecular Theory of Gases
and Liquids" (John Wiley, 1954), p. 547,

1 Fellow National Science Foundation.



SOME MOLECULAR COLLISION INTEGRALS FOR POINT ATTRACTION
AND REPULSION POTENTIALS

M. A. Eliason, D. E. Stogryn, and J. O. Hirschfelder

University of Wisconsin Naval Research Laboratory
Madison, Wisconsin

The transport coefficients for a dilute gas made up of molecules which have

a potential energy of interaction of the form

%(Y‘) i CQ r«"g (1)

can be expr_essedlin terms of the constants Am (§) s when d is positive and
the molecules repel each other; or in terms of the analogous constants Cw)(g) ,
to be defined below, when d is negative and the molecules attract each other. In
this paper, the values of A" (s) A®¢5) , c” (5) and C(z)(g) are
calculated for 8 = 2 and & = 3.

Although the second virial coefficient would be infinite in each of these cases,
the transport coefficients are finite. The evaluation of the collision integrals is not
difficult for either of the repulsive cases. When § = 2, A" (2) and A (2)
may be expressed in closed form. When p = 3, a formulation of Mott—Smith3 may
be used to obtain a rapidly converging infinite series for these collision integrals.
The integrals resulting from the attractive potentials are somewhat harder to evalu-
ate because of the spiraling of the molecules in collisions where the impact para-

meter is less than a critical value.

! J. O. Hirschfelder, C. F. Curtiss, and R, B. Bird; "Molecular Theory of Gases
and Liquids'; (John Wiley, 1954); p. 546.
. 1) 9
2 We find that for either attractive or repulsive point forces, the A (1) and C (1)
are infinite. The second virial coefficients (MTGL, Ref..l, P- 156) are infinite,
for either attractive or repulsive potentials if § is not gréater than 3,
3

H. M. Mott-Smith, "A New Approach in the Kinetic Theory of Gases", M. I. T.
Lincoln Laboratory, Group Report V-2 (December, 1954).



-2-

When § = 2, this spiraling results in an infinite angle of defleqtion whenever
the impact parameter is less than the critical value, and causes singular behavior
in a part of the collision integral. This part of the integral is approximated, and
the remainder is obtained in closed form.

For ¥ = 3, the critical impact parameter corresponds to a singular point
in the collision integrals. The asymptotic behavior in the vicinity of the singular
point is investigated and the integrals are evaluated numerically. Use is made of
the fact that with § = 3, the angle of deflection is simply expressable in terms of
incomplete elliptic integrals of the first kind,

The collision integrals are defined in the following way. 4 The collision of
two molecules is considered as the equivalent one body problem. A particle with
reduced mass 4 = % approaches a fixed center of force with initial
Speed g and impact parameter b. The potential energy of interaction is given by
Eq. (1), where d is a constant, and r the distance of the incoming particle from
the scattering center. F¥igure 1l shows the trajectory. The particle is deflected
through an angle of deflection X and the distance of closest approach is «r

Now, if we define

Lk
B 4ot go= [$4L]?

Y= (2)

the angle of deflection may be written as a function of Yo
You (Yo) S
X{yo): m-16, = 1T *—2f [/— /yoJ Jy (3)

MTGL, Ref. 1, p. 546, it should be noted that our /A\ (5) and that of MTGL
-3¢

are equalto 9 ¥ AP (s ','./) where the AJ(S-H) are the collision integrals of

S. Chapman and T, Cowling, "The Mathematical Theory of Non Uniform Gases!"

(Cambridge Press, 1939), p, 172.
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Fig. 1 Trajectory for repulsive potential.
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center of force

Fig, 2 Trajectory for attractive potential.

Case where particle passes through center of force,
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The upper limit on the integral is the first positive root of the polynomial in the
denominator of the integrand.

Then the collision cross-sections for the various transport properties are

O = am [ AL A

FTMy*

given by
(4)

(4

where the molecular collision integral, A ) (5) is given by

AVs) = {w( | — coad X) 9y, dy, " (5)

When the potential is attractive, d = -a and the potential has the form

- -5
Fr=—cr ©

Also, let us define
TR
ﬁ = b [ e 8 ] - (7)

It is easily seen that with 4 , which is a real, positive quantity, Eq. (2) becomes,

for an attractive potential

Yo (4) y14
X(,@):ﬁ—QQQ ':77“‘2[o [/";7"*5"1(%)_]49 (8)

if /5 is greater than ﬂ crit’ the polynomial in the denominator of the integrand has
a first positive root, ym('@ ). However, if /G is less than ﬂ crit’ ym (/3) = 0
corresponding to the fact that the incoming particle actually passes through the
center of force, rm = 0, and then goes out again. In this case, the angle of deflec-
tion is given by
ot _//
- AN G
xX(g)= =26, ==2 [ [1-y:+2(%)"]
6 LIRS0y
rather than by eq. (8). Such a trajectory is shown in Fig. 2.

For the attractive potentials the various collision cross-sections are given

w \%
QU)) - 29 (?fi'g’); C(j)/g) (10)

by




where

CM)((S) = '[o (1= mﬂx)/ﬂ’ JB (11)

I. Centers of Repulsion

9)
For repulsive potentials, when 5 is 2 or greater, the A( (S) are finite.

The case of & = 1, however, is a potential of sufficiently long range that the integral

)
for A (1) is infinite, In this case, the angle of deflection is

X (y) = 2 i [r4y27%]

(12)
and the integral in Eq. (5) diverges,
(a) 2 = 2

The repulsive, inverse square potential is of interest because the integrations
. . 5
may be carried out analytically.

First of all, the angle of the deflection from
Eq. (3) is

V”“ )
X (y.) = Tr-—?cf [1—(“5‘3;)9“‘]/2&!’?«

(13)
Let x = Zy:" ; then Yoy = (1 +3‘g)_%‘
(144) %
-4 _ g
X (x) = T =201+3)" _in ’[g(“‘})é_} ,
(o}
-4
i) = 1 -1+3)%]
(14)

. 1 2
The evaluation of A( )(2) and A( )(2) was carried out by John S. Dahler with the
help of Donald W. Jepsen,
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With this change of variables, Eq. (5) becomes

Al = 7 f (1= entz) Ix (15)

2 2
Nowlet x = z [/ (1 -2 ), then X = (1 - z), Substituting into Eq. (15)
and integrating by parts

l .
) - L _//_Tf . T Z
A = -7 T35 ) T-z= d? (16

I

{ '
_I [ e ATZ
f fd ——— Jz (17)

A(ﬂ(l)

But it is easy to show that

!

| s T2y = 20" Si(amm) =2 St (mm)] (08)
where
Si(x) = fox M—%‘Z Iz (19)
Thus we obtain
AW 2y = 0.397601 (20)
A(Z) (2) = 0.527843 (21)

""Tables of Sine, Cosine, and Exponential Integrals', Vol. II, WPA (Federal
Works Agency, Works Progress Administration for the City of New York.)
(1940).

Y



b & = 3.

In the 'case of the inverse cube repulsive potential, we were able to make use
of a method which has been developed by I\/Io‘ct-Smith3 to evaluate the A(—a)( 5)
Through the application of BUrmann's Theo:n'm7 he has found that Eq. (5) can be

written as

(9 ?%vfﬁ/— 0%) Fln) won 2 Jx
AT(r) = 2 o( co A (22)

where the F (X ) sinX 1is given by

[e=]
, - xS . Pl =%
F(r)oum X = covy p__>—__~oD,o (ain %) (23)

The D, are constants, depending ohly on s .

-3
2\ +% J° %-2,,.5 2 ___\"%
D= % (%) ° 4 (L 0+2% " (22 pm) (24)
) -

with the H(Zz) given by
I 2 t/s 7"(%5737“33')71/-57“5")
Hiz) = “S_Z"( S)Zstzm(-l) (1:) T (L5t -8 *) (25)

For § = 3, we obtain the results given in Table I.

Table I

The Mott-Smith Coefficients D,o for § = 3

P De

. 25438
. 12487
.01019
.00282
. 00317

B W= O
co o oo

E. T. Whittaker and G. N. Watson: "A Course of Modern Analysis'; 4th Ed.
(Cambridge University Press) (1952) p. 128.
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and integration gives the general

Substitution of Eg. (23) into Egq. (22)

expression

(26)

2 2 '
%%: FZ (1" 2" () S +fzé‘m 2)

mx|

A% =

The two cases which are of interest are then

0 I
A(z) = % PO De [ P
|

]. (27)

2) 7/ — [ .
(3) = 27 ) Dp[p»“’/z Pt (28)
p=0
Thus we obtain
A(l) (3) = 0,311i5 (29)
(30)

A (3 = 0.3533

II. Centers of Attraction
When the potential is attractive there is a singularity in the expression for the

The Mott-Smith formulation is no longer applicable so we

angle of deflection.
proceed as follows.
= b for any relative kinetic energy

There exists a critical value of b

such that for b less than b
crit

crit
there are no positive roots to the

744
equation
&
ty = | -y tcey =0 (31)
where
.
(32)

0
1
on
ey
01
—



and for b = b c =

-9-

. C e
crit ' crit

This critical value may be obtained by noting

that ©q, (31) has a double root at the critical value. Therefore, both f({y) and

f' (y) vanish for the same positive root, vy

crit *

flog= gt [-ay* +cagil = O

One may combine Egqs. (31) and (33), to solve for this root

5 4
"5’9«# = [5—1)2

and then go back and obtain the critical value of ¢

s % ~
cow = 285 %[ 5-2] /

Thus
/
5 (£)—= (%)
Ay
Bt = 2 5_2_
(a) § = 2.
For the attractive case, with 5- = 2, the angle of deflection is, from

Eqg. (8) and (9) n ]_,/5_

?@’

and

[I- )
Xlg) =TT~ 2[ [1-¢1-53)9"] /24&3

x(p) = -2]6 [ ==y Ty

2
;2>

Z

(33)

(34)

(35)

(36)

(37)

(38)
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Thus,
_ 1
x(p) = 7T[)—-(/-;T/2‘:) * ) VRS (39)
- ;5 1 X J{" o
x(p) = =2 (%Lf ~) 2%{(5}@“/) y +[1+Gp D] J o
- -0 ; 132 ¢ ‘:/Z (0)

2
In spite of the infinite value of the angle of deflection for all values of /3

less than 'ﬁL_ , one may still obtain the collision integrals. Eq. (11) is split into
two parts

-4 oo
Cw)(z) = f'i (|- cootx)rdp +£”« (/-cm‘)%)ﬁcﬂ,é

o

( y
_ Gﬂ) " H() (a1)

()
The second of these, the H , are obtained in closed form. Taking the expres-

sion for X from Eq. (39), and letting x = (1 - 521) » it is found that

(03]
2 /
g o 5 f co” Fx (7
(o}

(42)
2 / @ i _i"' )
A GRS I o
o
These expressions may be integrated by parts to give
< M X
(y _ IC f o x
H = -& | T -x2 (44)

cS
g ’rj fo’x Jx (45)

e ekt e - - =TS
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These may be rewritten as

(') ' { 4 v
y = I f 20 TX gy — f o T X |
w) =7 { | T A x T & (46)
? _im RATX U am AT X
@ ol [ xn2"7 R ctulalli \.
Y - { l i Ax + e JX} (47)

The first integral in each case is found. in Bierens de Haana, and second we found

in the evaluation of AV (2) and a? (2). Thus

. -
(1) {[Cz(rr),w'nir - Si(n) e ™ +jl S,’_(m}-S:m}] (48)

i
=y

H

u'?) —%;{ [Cilam)ainam = Si(an) a2 ] +3 Stl4m)- 5‘(2”)] (49)

Therefore,

g g st (am) = 0.556907 (50)
g3 . —Zg; S (477) = 0.585970 (51)

(2)

The values of the integrals G may be approximated in the following way.

% Y,
, a4 é‘ fo (= ceom 7‘)&’/52 (52}

D. Bierens de Haan, '"Nouvelles Tables D'Integrales Definies', (G. E. Stechert
and Co., 1939), Table 161, 3.

f;“’fﬁ" dx = ‘%‘ fCi(P%)MPa - L‘fm)m/ﬂz}

Gt (pg) = fw —— dx

. e AR
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If the upper limit on the integral for the angle of deflection is taken to be an arbi-

trarily large, but finite number 7,
! -4 4 N 4
v = =20 =0 {022 +[1+ e -) 277 ] (53

With this expression for the angle of deflection, the integrand of Eq. (52) is a
very rapidly oscillating function of ﬁ')‘; oscillating between 0 and 2 for G & s
and between 0 and 1 for G(?). As Z becomes very large, the peaks become

very close, and the average value of the integrand becomes very close to 1 for the

G andto % for the G . Thus, inthe limit that 7 becomes infinite, cor-

responding to the actual kinetic theory problem,

G = o275 (54)

[
—~
»
-~
|

0.125 (55)

Thus we obtain

Q)

(
C = @G VD) = 0.806907 (56)
(2
C%- G - H®  _ o.710970 (57)
() ¢ =3
In the case of the inverse cube attractive potential, 16 . = (:';‘-)1/6 and
C;‘lt -
. . _ 2k
Yn (B) varies from unity for B =0 to Y0 (ﬁ crit‘) = 3™ . Because of the

singular point it is convenient to divide the integration of Cu )(3) into two parts

) )
CU))(3) = ij (3) + C(; (3) " (58)
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where

3
C%%) = % f [1 = elz0)] J " (=)

Cm(z) = 7 fw‘[ |~ (—l)jc/mﬂ(.?@)]j - (60)
* 2 (%)’4 ? ﬁ
Here 91 and QZ are given in Egs. (9) and (8) respectively.

In evaluating Cl( / )(3) it is convenient to change the variable of integration

2
from /6 to qz to q where g is minus the (only) real root of the polynomial

in the denominator of Eq. (9)

ﬁﬁ 71[3(/- 5/2)]'/3 1)

Since the real root is negative in the range 0 < [5’ 2 < (%) 1/3

il

., g 1is positive.
Making the change of variables,

s z -% ‘
6, = /—~ /2 f [ /-7 * 53] Jg (62)

which is an incomplete elliptic integral of the first kindg.

Thus,
\:E
6 = (7‘3) & F(f k) (63)
where )y
_ Kl S
g - [5‘(3—32)] (64)
-k
Y= £+ G(3-280 [ (1-49(3~ 7 (65)
Y = co'| g7=2 F {(/‘5’”3‘5231/’_7 (66)
o

P. F. Byrd and M. D. Friedman, "Handbook of Elliptic Integrals for Engineexrs
and Physicists", (Springer, 1954), p. 88, Eq. 241.00.

ECS
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-y -g? )
Since ~°~Q—£-@—-? =3 % —Ci—-z—-); , the first integral, C (ﬁ (3) s
d (?"3 (I~ 32)'3 |

now given by

(.0) / < y (3~ z)
C ) = g3% of [1- c«88)] 755 Jg? (67)

Figs. 3 and 4 show the integrands for ,0 = 1 and for j = 2 respectively
as functions of qz.

It is seen that the integrands oscillate wildly as qZ approaches 0.75. The
integrals are subdivided into four ranges of qz. For the smaller values of qZ
numerical integration is satisfactory making use of the elliptical functions. How-

2
ever, for the larger values of g it is convenient to use 2§, as the integration

(89

variable and develop approximate expressions for =728 which will allow
analytic evaluation of the required integrals. Thus, Cl( )(3) is divided into the

2

< g < .68,.68 £ q° X .748, and

ranges 0 £ g < .52, .52 £ g
.748 £ qz < .75,

[4) () ) (0) (9)
Coqn» = I, " +1, + 1, + 1 (68)

2 ¢

o

where
52
() _L___ j‘ ¥ (3
I' = 2.3% ] [/-— e (25,)](/ ,‘)% oﬂg (69)
— () / 9,/02%% y N,
l,= 2 f [ 1= en’tz6]] ,Mw) J(28) ()
5. 87292

K /6, 91616 d(49)
7—/ - _é_ f [/ — Con (29,)_7J(2(9) J(QQ/) (71)

7. 1028¢

wo al(26 d(p )
Ly= 2 L.mxg - (26] 5if A (26:) 428) (7

!




(-c0528,) %—'_z%;}é‘/s

k3
q1)5/3

s
-

(l—cos‘:?.e,)(

_15-

g

44

40

36

32

28

] )} 3 ) i ] ] ] 1 1 ] }

f | i f l t | f f ( } } i i

05 J0 U5 20 25 30 35 HO 45 50 B5 60 65 10 15

%

%

(1)(3) from Eq. (67).

Fig. 3 Integrand of C1

{ ! (1 I} ] L ! ) 1 1 'l

| | { 1 | I [ { [ ] 1 | | }

05 JO JU5 20 25 30 .35 MO H5 50 55 60 .65 10 715
%

g

(2)(3) from Eq. (67).

Fig. 4 Integrand of C1

e
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(1)
1

(2)

and 11

The integrals I were evaluated numerically using Simpson's

Rule with interval sizes of .04 in qZ from 0 £ qZ £ .40 and intervals of .02

2
for larger values of qz. The integrands were evaluated at these values of g by
making use of Egs. (63) and (67) together with interpolated values of the elliptical
integral. Four point Lagrangian interpolation coefficients were used to interpolate

10
along both the rows and the coluinns in the table of Byrd and Friedman. Thus we )

obtained .
11(1) = . 2449 (73)
Il(z) = .1136 (74) .
. J(£) . .
An expression for m) , sufficiently accurate in the interval
1 2 2
< < . . . _
5.87292 = 291 = 9.10288 is obtained by fitting the curve of {@ crit. ﬁ R .

29,, with a cubic equation. (See Fig. 5 for a plot of ,B Zcrit — ,6 2 Vs, 291)

2 _ 2 3
By — 8= D +E@e) +F (28) 4G (26) (75)
The points
2 0 ) 5. 87292 6.74996 7.94016 9.10288
2 2
/3) NG .500778 .411380 . 300569 . 209800
crit
qZ .52 .58 .64 .68

are used to evaluate the constants in Eq. (75). The constants are D = 1,062129,
E = -.0640403, F = -.0092255, and G = .0006563. With these constants,
Eq. (75) fits the actual curve better than .05% in the region of interest.
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142 . N%
Mg 5 o uaym ‘07 A (F-0F) ¢ by

(- 3%9)
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Integration of Eq. (70) gives

7" = -L[ERE) +F(@6) +G026)

2

"‘-29,= 7'/02 Fr

— (E' + 2/—(?/)) 1’36129, Caf‘p;}/wwf'”//

- {2F +66(26)) ca 28) (76)

- 2= 567292
V26,29, (02R8

L= 2 |-2{Enre) +F(20) + G (26)
14 § E+2 F(26) +3G(26)% 2G] ain(46)

_+'}# { F +3 G(:ZQ,))? con (46,) Lows 8,7271(77)
We obtained
I M~ 1020 8
I @ _ . 0690 79)
The integrals 13('0) and 14('“ are evaluated with the aid of an asymptotic

expression for d ('@2) / d(Zﬁl) accurate near /6 The asymptotic form

crit, *
for 9 ] as qZ approaches .75 may be obtained as follows:

From Eqgs. (63) and (64),

g, = zf(/-g“)w—g‘)]-/‘{ F (k) (80)
As q©= .75, k=>1 and K'=»120° . Since '}

F(er) = 2Kk - F(m-¥ k), (81)

T(ek) = 2Kk - F(s0°, 1), (82)

11
Ref. 9, p. 12, Eq. 113.02
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¥ k' = (1 -kz),l/athe expansion for ‘K (k) is 2
K (k) = /%%)[l* ?ﬁ ,,212] "é}e/2+"' (83)
Since k ¥ 1,
2K € 1dnt = et (84)
F(ﬁk)gbﬁ - F(go 1) (85)
If the substitution q> = %,- 2% is made,
%[(;-—g‘)(?»- g’)]% = - %é‘zz Fot (86)
and
/%47&‘: ?—%[’+.422,+“'J (87)
Therefore,
0.5 Un2E - Flto%k) -
Since
L0 1) = = (o 600 e 66 (2= 3%)
2 = 3¢ (2 "31/’) 8-8' ¥ (90)
oo

Ref. 9, p. 298, Eq. 900.05

B

See Appendix A for an alternate derivation of this equation.
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Jg) DY iz |
J6) — Jd(zY J2e,) (91)

From Eq. (6l1), it is found that asymptotically
4
B = %["éz2] (92)

Therefore,

| |
)= ) (oo M) Gz s o e @

it » _p
Jo e = iké e B, 04

. ) . _ B
ﬂwi[ - ﬂ - 2/& e (95)

2
This suggests approximating l@ by an equation of the form

. - & . 2
S VRLLR %
Bloxss. — g7 = € A +B(206) +C(0) (96)
over the range 9.10288 £ 2 8, £ 16.91616. The points
2 91 9.10288 11.74086 16.91616
2 2
B crit B . 209800 .0780498 .0072236
q° .68 .7217 . 748
are used to evaluate the constants in Eq. (9%). The constants afe A = -30.419284,
B = 7.524143, and C = -.219515. Eq. (96) fits the actual curve better than . 5%

in the region of interest. Eq. (71) may now be integrated analytically; the results



-21-
202/, 9116
are:

I, = *6“9'((),5{4 +B(o,) +C(26)"}
- {(61A -0.32 +0,1780)

* (0B ~0,64¢)(28,) +0.1C(28,)"} cal26)
t {(cM - 0248 ~0,708C)

+H(0.2B-0,96C)(26,) + 0.2C(28)Y ain (26.)

(94)
16,29,/026¢%

. 26,2 /L
(0,2¢416 A — 0. 05534 B + 0,684 74C)

w

F(0. 2647068 = 6,110 726C)(26,) + 6, 264 706C (26,)F

+{(0.05 62244 ~0,103806 B-0,67¢532C)
; 2]
+(6, 658824 B - 0,2074/2C){28) + (0, od‘&mzlc)(:ee,)]m(“@u

~ffo.0299n4 —0.10727 B + 0.1673¢44C)

L +(0,027411 B - (,221454C) (26,) +.6.owwac(29,)‘]an1(2e,)J

, 5
'76':?,/0269(9 )
Thus we obtained
13(1) = . 1217 (96)
13(2) = .0444 (97)
The integrals I4<1) and 14(2) are evaluated with the help of Eq. (93).
0 o N ) 28, =0
—
= - T H 04 an(26) - m(—?&)]/ (98)
—l' Y /e - [ (M 2 20, = 16,9616
(2) B8 2 26 = @
I, =-ke '[1 = 0,117647 (% ewn*20,) —mrsf@,)“/]/ (99)

20,716,9/¢186
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Thus we obtained

(1)
I,

i

.0026 (100)

(2)
I, .0022 (101)

From Eqgs. (68), (73), (78), and (100) and Egs. (68), (74), (79), and (101)

respectively, we obtained

1

Cl(l)(3) .4712 (102)

cl(z)(a) = L2292 (103)

To evaluate the sz) (3) , as defined in Eq. (60), it is convenient to change

2
the variable of integration from ﬂ to p, where p is the first positive root

of the denominator in equation (8) ,

-%
/31:/4"[3()0"—/)] ? (104)
. Since y-m-(ﬁ) = p, it follows that
p -4
3 .4k 3 3 31 %
P2 PL . B gyt 4 ]
b, = (/7:') fa[)oz_, o g g dy (105)
which is another elliptic integral of the first kind. 13
Thus
0,= (F) g Tvir)
0 }41../ g ) (106)
where '
-~ 4 ~%
N -1 61 -3 ]
s Q[P(P ) (% ) (107)
13

Ref. 9, p. 74, eq. 234.00.
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. | L o)A
}?/2 — EzL +E(2)o"—3)(‘7'}0“3> (108)

L 3(6’/72—3)V1~ ‘//02'*3]‘/2
P "M[ 2 (3= p*)

Eq. (60) for the Cw (3) becomes
(,0) J (3-p% 2
C = 2. 3 f[ - (1) cod (29] * /)5” 00/9 (110)

Figures 6 and 7 show the integrands for /() = 1 and ,ﬂ = 2 respectively, as

(109)

2
functions of p .

Here again, the integrations were carried out in several parts, with the

2

method chosen to fit the behavior of the integrand in the various ranges of p .
“’)(3 is divided into the ranges 1% p? < 1.025; 1.025 $ p2 < 1.050;

1.050 € p< 2.90; and 2.90 € p> < 3.00. Thaus,

Cf)@) = :)"w) +j2'“ 4 jw + j:” (111)

3

where
| /025 (3-
j( = 5ia% f [ —(/) e (29:_]( 7. ,)% J/O (112)
/(050
» L j )2 e (3-0
ja. = 3'3573 /,015[’—(/) (26 )] l)b/ J - -
~ (9 .,_l?/.f [, - (-/)ﬂcmj /29)](3 P)V3 p//d (114)
J3 - 2037 1108

’ (3 )
j(‘:) = 2,}35/3f7[ |- (—/)’pmﬁ(ﬂé’ . a/3 J/y (115)
20

M e e =
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2.00
} 1 ] i 1 f ) 1 1 I 1 Al
I T I 1 | ! I 1 ] | J 1 I
oo 115 130 M5 160 LT5 190 2.05 220 235 250 265 280 295 3o
P’-
Fig. 6 Integrand of Cz(l)(3) from Egq. (110).

300
! ' 3 1 ] i 5 ) |A . I
} | I I 1 ! | | I | | 1 1
oo LI5 180 %5 L6060 ILT5 190 205 220 2.25 250 2,65 2,80 295 30

F"L

Fig. 7 Integrand of CZ(Z)(3) from Eq. (110),

am
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To obtain. Jl(p) , write Eq. {105) as

/
92 = fef[(/—% (/ +j,§ v—()g’--/)(%)q)]—/;%t (116)
Since p> £ 1, the term (p> - 1) (%)2 can be neglected, and
[F[ I - (%)Z]—%Jy ol %Z P (117)
Using the fact that |1 - (-1)‘”cos£(29 = (- coij ) and Eq. (112),

JM T’éf (/

Since p is almost 1, Eq. (118) may be written as

(w"' ,) % p* (118)

[o2&

‘ | PR -%
P st [ ) T

From Egs. (8), (117), and a power series expansion of cos X, one finds that

1 2
—coax = Z (o))" k(1) (120)

Powers of (p - 1) higher than three are neglected in Eq. (120) and ™ is chosen
so that the integrand of Eq. (119) is equal to 1.15406, the value of the integrand of

Eq. (110) when p2 = pl2 = 1.025, K equals 239.49. From Eq. (119))

() _5'/ hoa¥ _z
JI( = ¢ ? f [%Z(;o—l)z't‘al(}Q")j](;O'/) b/sjloz

(121)
and
J.mz %fwf” (p-)" + 2ot (p- 1) 5‘()”")4-ﬁ:((P—/)$——o(z()o—l)é](p-y)-%‘},o 2
=3.¢% —'}z(;o,—l)é +&( T +24) (-5 + L (ot - %2-“/9;‘/)/%
E 422 )E - Bt 0B ) ® |

- ‘e —
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Thus we obtained

;M

. 0.0015 (123)

(2)
T,

il

0.0029 (124)

(h

Four point Lagrangian integration coefficients are used to get the JZ

(1)

Jz = 0.0026 {125)
JZ(Z) = 0.,0081 (126)
3‘3('” is obtained by using Simpson's rule with interval sizes of 0,025 in

2
p from 1.05 to 1.20, 0.05 in pz from 1,20 to 1.30, and .10 in pz from
1.30 to 2.90

[
1

. 1996 (127)

1]

. 2267 (128)

1
J4( ) is found by noting that an upper limit to the value of Eq. (115) is

obtained by setting cos 2 & 5 = 1. Thus,

- 3 Iy
—ul ) A 2y a7 ~ .
T, < T = 3 Lq (3-p) (p™)) JPZ = 0,00026 (129)

Since the cosine term of Eq. (115) has infinitely many oscillations in this region,

to a sufficient degree of accuracy, the factor (1 + cos 292) can be replaced by

(1) (1)

its mean value of unity in the integral for 34 . Thus, a good estimate of J4

. ! (1)
is 7 Jmax and

7 2 o013 (130)
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The best estimate of J4(2) is obtained in a similar fashion. Here, the
4
(1)

y J . The average value of (1l - cosZZQ ) is one-half, so that our best
2. "Max 2
@ o 15 (O ,

!

. 2 : . . (2) i
maximum value of (1 - cos 2 62) is unity so that the maximum value of J = {
|

1

estimate of J }

4 18 4 "Max ¥
|
: : “;
J4(2> = .0007 (131) ;
,
1
. Eq. (111} gives i
cz(l) (3) = .2038 (132) :
CZ(Z) (3) = .2349 (133) ’
| j
From Eq. (58), the collision integrals are found to be 1
1

C( )(3) = .6750 {134)
2 .
C( ) {(3) = .4641 (135) ’
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SUMMARY

The collision integrals we evaluated are:

Repulsive Potential

A2y - 397601 A® ) - 527843

Aty o s1s A3y - 3533
Attractive Potential

cMzy = . 806907 c®2) = 710970

cil)(3) = .6750 cl®isy - L aem1
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APPENDIX A
In this appendix, an alternate derivation of the asymptotic equation,

Eq. (90), is given, Write

-4

- 3 11-;»(3/)3]-’/2 +f°°[/_ 2+.L(3/)3]
0.6, *6n = L=y r 8000 4y * JLrye=(B)]dy

} }
-/ -7
and make the substitution x = 1 -379 in §, and z =3 "4 -1 in 8,

Then)

! -
B, = v{[[x’(/—’/zx) -] X (A-2)

g.= [[zH1+%2) +<*() 2]z

(A-3)
2 _ vz[-'-g__l_g ] ( 3)'/;)
c- = 3 34 36| Bot=(% (A-4)
s 2 .
Let X, be a small positive number and take ﬁ close to Bcrit so that ¢ is
much smaller than Xy - Then

~ Xo Nz ro -%
6.5 [T T he 7m0 I x

s Xs

%1 /) 3% (l—%X)I/Z-/-/
o L (g +er)” - 2
’/&{C [, « tx CU(/H”’)(U—%&)”*-/)

@” ~ ,éw[m (QC-— 3%) :’ | 56

(A-5)

REETL
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2
In order to evaluate @ 12 take z, small and choose ¢ much less

than z0 . Then,

0.

He

z, -4 @ -4
f [z‘+3c‘z +c‘] Jz +f z7'(1+%2) ")z
° Zs

. _{q(zf +3c‘Z°+c’~)Vz +22z, +3cz'}
- ,ﬁw 2¢ + 3ct
)
z. D/‘—/}
+j"'{(/+/z)’/z +/

9 Z, A
Mo =2t a3, (A-7)
O. & & (A-8)
12 C

Therefore,
o~ %[/44(2‘3/1)J
0, = c* (4-9)
By using the equation q2 = ‘3 - zz,, we obtain
2~ 4z*
¢ = | — 22Z* (A-10)
. ~ ,ﬂm[ /w(z-a"z)(/—z)] %[34(2 3")]
) e 19, = gz (A-11)

| Eq.(90)follows immediately.
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" APPENDIX B

In this appendix, values for the angle of deflection 7} are given together
with a graph of X vs. l@ 2.

The angle 7% is evaluated for values of qZ listed in Table a by using
Egs. (é) and (63). Since in this case }ﬂ > 90° , Eq. (81) is also used.
Four point Lagrangian interpolation coefficients are used to interpolate along both
the rows and columns in the table for F( W‘ k) found in Byrd and ]:""riedmaurl14 for
allv‘._qz. For all values of q2 except q2. : . 734, .741, and .748, the four
point Lagrangian interpolation coefficients are used to interpolate along the column
of the table for K (k) . For the three values of q2. just given, it is more accurate

to use the equation

K= /A ée{“/k +£;Q/A—Z')k 4o (B-1)

whére
7,
/= L., 'y (B -2)
k=

2 4
(11— F) (B-3)

For values of pz listed in Table b, Egs. (8 and (106) are used to evalu-
ate X . Four point Lagrangian interpolation coefficients are used as explained

above tc evaluate the elliptic function.

14 Ref. 10.

15 E. Jahnke and F. Emde, "Tables of Functions", (Dover, 1945), p. 73.

PO
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Table a
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2 < p2
(ﬁ \ﬁ crit)

p° q° -x B° a -

0 0 0 0.40778224 | 0.52 5. 87292
0.01976052 | 0.04 1,14281 0.43565336 | 0. 54 6. 14246
0.04065843 | 0.08 1.64778 0.46537752 | 0. 56 6. 43332
0.06282202 | 0.02 2.06022 0.4971807 | 0.58 6. 74996
0.08640116 | 0.16 2.43106 0.5313292 | 0.60 7. 09994
0.11157215 | 0.20 2.78204 0.5681396 | 0.62 7.49232
0. 13854409 0.24 3.12378 0.6079917 | 0.64 7,940 16
0.16756714 | 0.28 3. 46410 0.6513440 | 0.66 8. 46456
0.19894356 | 0.32 3.81040 0.6987600 | 0.68 9.10288
0.23304244 | 0.36 4.16814 0.7509361 | 0.70 9.93132
0.27032007 | 0.40 4. 54440 0.8087475 | 0.72 | 11.13542
0.29032412 | 0.42 4.74186 0.8305105 | 0.727 | 11.74086
0.31134829 0.44 4.94660 0.8531540 | 0.734 | 12.55009
0. 33348871 0.46 5.16038 0.87674009 | 0.741 | 13.79346
0.35685478 | 0.48 5. 38462 0.90133673 |0.748 | 16.91616
0.38186008 | 0.50 5.62188 0.90856029 | 0.750 o




Table b
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(ﬁz }..lﬁzcrit)

2

B p’ - X 52 p’ - X
0.908561 3.000 oo 1.08128 1. 600 1.22953
0.908832 2.900 7.33231 1.14471 1.500 1.01080
0.909693 2. 800 5.88405 1. 23977 1.400 | 0.80593
0.911285 2. 700 5.01853 1. 39459 1.300 0.60135
0.913713 2.600 | 4,38617 1.51426 1.250 0.50003
0.917210 2. 500 3.88115 1. 68686 1. 200 0.39967
0.921956 2. 400 3.45659 1. 80551 1.175 | 0.34957
0.928299 2. 300 3.08831 1.95835 1.150 0.29959
0.936595 2. 200 2. 75875 2.16338 1.125 | 0.24961
0.947424 2.100 2. 46005 2.45458 1. 100 0.19967
0. 961500 2.000 2.18679 2.90595 1.075 | 0.14979
0.979892 1.900 1.92637 3.71930 1.050 0.09981
1.00415 1. 800 1. 68321 5.76345 1.025 | 0.04995
1.03666 1. 700 1.45191 00 1.000 0
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